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Finite-amplitude convection in the form of rolls and their stability with respect to
infinitesimal disturbances is investigated in the case of boundaries of the horizontal
fluid layer which exhibit a thermal conductivity comparable to that of the fluid. It is
found that even when rolls represent the preferred mode at the onset of convection
a transition to square cells may occur at slightly supercritical Rayleigh numbers.
The phenomenon of inertial convection in low Prandtl number fluids appears to
become more pronounced as the conductivity of the boundaries is reduced. Modulated
convection rolls have also been found as solutions of the problem. But they appear
to be unstable in general. Experimental observations have been made and are found
in general agreement with the theoretical predictions.

1. Introduction
Rayleigh–Bénard convection in a fluid layer heated from below has been analysed

in much detail in the past few decades as a representative example of the formation
of dynamical structures in fluids. But attention has usually been focused on the
case of infinitely conducting boundaries, which can be described most simply from
a theoretical point of view. While experimenters have strived to approach this ideal
limit, a finite ratio λ between the thermal conductivity of the boundary and that of the
fluid is always realized in experiments. In geophysical and engineering applications
the conductivity of the boundary is often comparable to that of the fluid and so there
exists considerable interest in the influence of finite values of λ.

The variation with λ of the critical value Rc of the Rayleigh number for the onset of
convection is well known from Sparrow, Goldstein & Jonsson (1964), Jakeman (1968)
and others. See also the discussion in the book of Gershuni & Zhukovitskii (1976).
The preference for square cells instead of rolls was found by Busse & Riahi (1980)
in the limit of vanishing λ and was later generalized to the case of finite λ and
asymmetric boundary conditions by Riahi (1985).

Most of the work on nonlinear properties of convection in the presence of bound-
aries of finite conductivity has been restricted to the weakly nonlinear limit. In
this paper we shall go beyond the neighbourhood of the critical Rayleigh number
and analyse convection rolls and their instabilities for an extensive range in the
Rayleigh, Prandtl and wavenumber parameter space. After the formulation of the
basic equations and of the mathematical method for their solution in § 2, stationary
two-dimensional solutions are discussed in § 3. An analysis of their stability follows
in § 4 and in § 5 the phenomenon of inertial convection is studied. The results of an
experiment are reported in § 6. A concluding discussion is given in the last section of
the paper.
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2. Mathematical formulation of the problem
We consider a horizontal fluid layer of height d heated from below. The average

temperature at the upper and lower boundaries is T1 and T2, respectively. Using d
as length scale, d2/κ as time scale, where κ is the thermal diffusivity, and T2 − T1 as
scale of the temperature we can write the equations of motion for the velocity vector
u and the heat equations for the deviation Θ of the temperature from its distribution
in the static case in dimensionless form:(

∂

∂t
u+ u · ∇u

)
P−1 = −∇π + RΘk + ∇2u, (1a)

∇ · u = 0, (1b)

∂

∂t
Θ + u · ∇Θ = u · k + ∇2Θ, (1c)

where the Rayleigh number R and the Prandtl number P have their usual definitions:

R =
γg(T2 − T1)d

3

κν
, P =

ν

κ
.

Here, γ, g and ν denote the thermal expansivity, the acceleration due to gravity and
the kinematic viscosity, respectively. The Boussinesq approximation has been used in
that a constant density has been assumed except in the gravity term. We shall use a
Cartesian system of coordinates with z-coordinate in the direction of the vertical unit
vector k. The conditions at the rigid top and bottom boundaries require

u = 0, Θ = Θ̂,
∂

∂z
Θ = λ

∂

∂z
Θ̂ at z = ± 1

2
, (2)

where Θ̂ is the deviation from the static temperature distribution at the boundaries.
There exist a large variety of ways in which boundaries can be arranged such that
the temperature distribution of the state of pure conduction depends only on z. We
shall assume for simplicity the simplest configuration in which the boundaries are
represented by half-spaces of uniform thermal conductivity which exceeds that of the
fluid by the factor λ. The horizontal temperature variation will penetrate into the
half-spaces only for a distance of the order d unless λ becomes very small such that
large-wavelength convection becomes preferred. Accordingly the properties of the
boundaries at a distance larger than d from the fluid layer will have little influence on
the convection flow as long as they are uniform in the horizontal dimensions. We thus
can assume that the computations presented in this paper will be representative for
a variety of other boundary configurations. To eliminate the equation of continuity
(1b) it is convenient to use the general representation for the solenoidal vector field u,

u = ∇× (∇× kϕ) + ∇× kψ ≡ δϕ+ εψ (3)

and to take the z-components of the curl curl and the curl of equation (1a):[
∂

∂t
∇2∆2ϕ+ δ · (u · ∇u)

]
P−1 = −R∆2Θ + ∇4∆2ϕ, (4a)

[
∂

∂t
∆2ψ + ε · (u · ∇u)

]
P−1 = ∇2∆2ψ. (4b)

Without losing generality we can impose the condition that the average of ϕ, ψ over
the (x, y)-plane vanishes. Two-dimensional steady solutions of the system of equations
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(1c) and (4) can be obtained in the form

ϕ(x, z) =

∞∑
m, n=1

amn cos(mαx)fn(z), (5a)

Θ(x, z) =

∞∑
m=0, n=1

bmn cos(mαx)hmn(z), (5b)

where fn(z) denotes the Chandrasekhar (1961) functions,

fn(z) =


cosh βnz

cosh βn/2
− cos βnz

cos βn/2
for odd n

sinh βnz

sinh βn/2
− sin βnz

sin βn/2
for even n,

(6)

and the functions hmn(z) are defined by

hmn(z) =


sin nπz for m = 0 and for even n

cos γmnz for m 6= 0 and for odd n

sin γmnz for m 6= 0 and for even n,

(7)

Note that the summation in (5b) starts at m = 0 since Θ includes the change in
the profile of the mean temperature. The quantities γmn are determined such that the
boundary condition (2) for Θ is satisfied together with the solution

Θ̂ =

∞∑
m=1, n=1

bmnhmn(± 1
2
) exp {∓mα(z ∓ 1

2
)}+ λ(z ∓ 1

2
)

×
∞∑

n= even

b0nnπ(−1)n/2 for z

{
> 1

2

< − 1
2

(8)

at the boundaries:
γmn tan( 1

2
γmn) = λmα for odd n (9a)

γmn cot( 1
2
γmn) = −λmα for even n. (9b)

There is no need to specify h0n for odd n since for all solutions considered in this paper
the mean temperature profile will be antisymmetric with respect to the midplane of
the layer and thus all coefficients b0n with odd n are vanishing. Moreover, we also
use the symmetry property that the solutions bifurcating from the static state near
the onset of convection exhibit vanishing coefficients whenever the sum m+ n of the
subscripts m, n is odd. The quantities βn obey the relationships

tanh( 1
2
βn) + tan( 1

2
βn) = 0 for odd n (10a)

coth( 1
2
βn)− cot( 1

2
βn) = 0 for even n (10b)

which ensure that the boundary conditions ϕ = (∂/∂z)ϕ = 0 at z = ± 1
2

are satisfied.
For two-dimensional steady solutions ψ ≡ 0 holds as required by equation (4b)
together with the boundary condition ψ = 0 at z = ± 1

2
.

After representations (5) have been introduced into equations (1c) and (4a), we ob-
tain nonlinear algebraic equations for the unknowns amn, bmn by multiplying equations
(1c) and (4a) by the expansion functions used in expressions (5a) and (5b), respec-
tively, and averaging the result over the fluid layer. The system of nonlinear algebraic
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equations can be solved by a Newton–Raphson iteration method after the infinite
system has been truncated. We shall neglect all coefficients amn, bmn and corresponding
equations that satisfy

m+ n > NT , (11)

where the truncation parameter NT is chosen such that the solution does not change
significantly when NT is replaced by NT + 2. Usually we shall require that the
convective heat transport changes by less than 1% with this change of the truncation
parameter. For the normal roll solutions values up to NT = 16 proved to be sufficient.
But in some low Prandtl number cases and for the modulated roll solutions discussed
in the next section values up to NT = 22 were used.

The stability of steady solutions of the form (5) can be analysed through the
superposition of infinitesimal disturbances

ϕ̃ =
∑
m,n

ãmn exp{imαx+ iby + idx+ σt}fn(z), (12a)

ψ̃ =
∑
m,n

c̃mn exp{imαx+ iby + idx+ σt} sin nπ(z + 1
2
), (12b)

Θ̃ =
∑
m,n

b̃mn exp{imαx+ iby + idx+ σt}h̃mn(z), (12c)

where the functions h̃mn(z) are given by

h̃mn(z) =

{
cos γ̃mnz for odd n

sin γ̃mnz for even n
(13)

and where the γ̃mn are defined as the roots of the equations

γ̃mn tan( 1
2
γ̃mn) = ((mα+ d)2 + b2)

1
2 λ for odd n, (14a)

γ̃mn cot( 1
2
γ̃mn) = −((mα+ d)2 + b2)

1
2 λ for even n. (14b)

The representation (12c) together with the definitions (13), (14) guarantees that the
disturbance Θ̃ is matched correctly to the corresponding steady solution at the
boundaries. The representation (12c) thus becomes correct only in the special case
σ = 0. Since most instabilities of interest are characterized by a vanishing imaginary
part σi of σ and since we are interested in the stability boundary at which the real
part σr of σ changes sign the restriction to σ = 0 is not a serious one. For σ 6= 0 the
representation (12) will still give approximately correct results as long as |σ| is not
large compared to (α+ d)2 + b2.

3. Steady convection in the form of rolls
Rolls described by two-dimensional solutions of the form (5) represent the simplest

form of convection and are often realized in experiments when the critical value of the
Rayleigh number is exceeded and when the asymmetry with respect to the midplane of
the layer vanishes. In the present case of finitely conducting boundaries the structure
of the isotherms becomes a striking feature of the solution. As the convection flow
distorts the originally horizontally oriented isotherms it pulls in additional isotherms
from the weakly conducting boundaries such that the orientation of the isotherms
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Figure 1. Isotherms (top) and streamlines (bottom) of convection rolls in the case P = 0.71,
λ = 0.1, R = 5000, α = 2.0. Solid (dashed) curves indicate positive (negative) values.
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Figure 2. Isotherms of convection rolls between boundaries for which the thermal conductivity
differs by the ratio λ from that of the fluid. (a) P = 0.01 with λ = 0.5 and α = 2.071; (b) P = 0.71
with λ = 2 and α = 2.705; and (c) P = 0.71 with λ = 0.5, α = 2.705. The boundary region adjacent
to the layer is also shown. R = 5000 in all cases.

becomes predominantly vertical as can be seen in figure 1. Since the deviations from
the horizontal isotherms of the basic static state occur over a larger height than
that of the fluid layer, the wavelength of the convection rolls becomes larger with
decreasing λ and the critical value Rc of the Rayleigh number is also reduced. From
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Figure 3. (a) The Nusselt number Nu as a function of the Rayleigh number R for the Prandtl
numbers P = 0.71 (solid lines), P = 0.1 (dotted lines) and P = 0.025 (dashed lines). The four
lines in each case correspond to λ = 0.4, 1, 4,∞ (from top to bottom on the left-hand side)
always with α = 3.0. The dash-dotted line corresponds to the critical value αc = 1.96 in the case
P = 0.025, λ = 0.4. (b) As (a) but for large R. The sequence of lines for each of the three Prandtl
number cases is given by λ = 0.4, 1,∞ (from top to bottom).

the mathematical point of view the decrease of the eigenvalue Rc of the linear problem
is caused, of course, by the weakening of the boundary condition (2) for Θ as λ is
decreased from infinity to zero. Some other examples of isotherms of convection rolls
are shown in figure 2 where parts of the solid boundaries are shown as well in order
to provide a more realistic picture of the temperature distribution. It is of interest to
see that the hot and cold plumes tend to exhibit a double structure as the Prandtl
number is decreased.

While the structure of the isotherms differs considerably for boundaries of low
and of high thermal conductivity, the convective heat transport varies more with the
Prandtl number than with the parameter λ, as is evident from figure 3(a). In figures
3(a) and 3(b) all lines except for one correspond to the same wavenumber in order
to facilitate the comparison. If the critical value of the wavenumber α is used the
heat transport in the cases of boundaries with low conductivity no longer exceeds
the transport in the case of highly conducting boundaries except close to the onset
of convection. Thus the sequence of the heat transports as a function of λ becomes
reversed, at least in the cases P = 0.1 and P = 0.025, when the critical value of α
is used instead of a fixed value. The fact that low-conducting boundaries do not
inhibit the heat transport in the fluid layer more significantly must be attributed
to the property that the convective transport given by the horizontal average uzΘ
penetrates closer to the boundaries since only uz must vanish there, while both uz and
Θ vanish at the infinitely conducting boundary.

A special feature of convection in the presence of finitely conducting boundaries
is that many types of modulated roll solutions exist besides the normal periodic
arrangement of convection rolls. Examples of various coexisting rolls of different
size at the same external conditions are shown in figure 4(a, b). Obviously, the
soft boundary conditions for the temperature field promote an arrangement where
weak small rolls coexist in a steady equilibrium with strong larger rolls. The solution
branches of modulated rolls are connected through bifurcations with solution branches
of strictly periodic rolls as shown, for example, in figure 5. Here an additional branch
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Figure 4. (a) Isotherms and (b) streamlines of simply periodic (uppermost and lowermost panel)
and of modulated periodic convection rolls in the case R = 10000, α = 1, P = 0.71 and λ = 1.
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Figure 5. The Nusselt number Nu as a function of the Rayleigh number in the case P = 0.71,
λ = 1. The left solid line and the dotted line correspond to rolls with the wavenumbers α = 1.5 and
α = 4.5, respectively. Modulated rolls bifurcate from the rolls with α = 4.5 as indicated in the figure.
The flow is downward in the middle of each streamline pattern.

of periodic rolls with α = 7.5 (instead of α = 4.5) could have been computed from
which a branch of modulated rolls would bifurcate with one dominant roll pair and
four weaker roll pairs (instead of two weaker roll pairs as shown in the figure).
But because all modulated roll solutions were found to be unstable, only selected
cases have been computed. Modulated rolls have also been found in an analysis of
convection with fixed temperatures at the boundaries (Mizushima & Fujimura 1992).

4. Instabilities of steady roll solutions
Because of the large number of parameters involved in the problem, the stability of

steady two-dimensional convection solutions has been analysed only with respect to
disturbances of the form (12) with d = 0. Since it is known from earlier studies (see,
for example, Bolton, Busse & Clever 1986) of the stability of convection rolls in the
presence of infinitely conducting boundaries that disturbances with d = 0 are the most
important ones in most of the parameter space of the problem, the assumption d = 0
does not seem to be too restrictive. The Eckhaus instability has been disregarded in
this way, but it usually does not limit the region of stable rolls in the parameter space.
The neglect of the skewed varicose instability is more serious and must be kept in
mind when the theoretical results are compared to future experimental observations.

The main goal of the stability analysis has been the understanding of the transition
from rolls to square convection at supercritical Rayleigh numbers. This transition
is accomplished by the cross-roll instability which corresponds to d = 0. Rolls at a
right angle to the given rolls grow in this case until convection in the form of a
square pattern or a rectangular pattern is realized. We start by considering the case
of P = 450 shown in figure 6. This Prandtl number is representative of large P values
and the results hardly differ from the case P = ∞. Beginning with the classical case
of infinitely conducting boundaries, λ = ∞, this figure demonstrates how the region
of stable steady roll convection shrinks as λ is decreased. It is remarkable how similar
the stability regions are for different values of λ. This property is peculiar to the
limit of high Prandtl number and reflects the property that only the nonlinear term
of the heat equation enters the analysis at high values of P . The zig-zag instability
which limits the region of stable rolls to smaller values of α depends very little on
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Figure 6. Stability boundaries in the (R, α)-plane for two-dimensional rolls in the case P = 450
for λ = ∞ (solid lines), λ = 4 (dashed-dotted lines), λ = 2 (dashed lines), λ = 1.3 (dotted lines).
The lowermost line indicates the neutral curve for the onset of convection for each λ. The stability
regions are bounded by the onset of the cross-roll instability on the right-hand side with the
numbers denoting the wavenumbers b of the growing disturbances, while the line on the left-hand
side indicates the onset of the zig-zag instability in the limit of vanishing wavenumbers b.

λ, while the growth rate of the cross-roll instability increases with |α − αc| as well
as with R − Rc as λ is decreased. The region of stability thus contracts in a nearly
self-similar way until square convection corresponding to the superposition of rolls
and cross-rolls replaces rolls as stable form of convection at R = Rc. In figure 7 the
stability boundaries are shown for the case P = 7 which exhibits a lesser degree of
similarity. Again the region of stable rolls is much reduced as λ decreases towards the
value where rolls are unstable even at the critical value Rc of the Rayleigh number
according to the analysis of Riahi (1985).

In the P = 0.71 case shown in figure 8 the shape of the stability region changes
considerably as λ is decreased from infinity. It is noteworthy that the stability region
now extends as a narrow strip towards small wavenumbers. Because of numerical
difficulties it was not possible to continue the computations to much lower wavenum-
ber than those shown in the figure. Another feature of interest is that the onset of
the oscillatory instability hardly depends on the conductivity ratio λ. This property
is less surprising if it is remembered that the oscillatory instability is hydrodynamic
(Busse 1972) and is only slightly influenced by thermal effects. Because this instability
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Figure 7. Same as figure 6, but in the case P = 7 for λ = ∞ (solid lines), λ = 10 (dash-dotted
lines), λ = 4 (dashed lines), λ = 2 (dotted lines). The stability boundary on the right-hand side is
now given by the knot instability characterized by values of b < αc, while the zig-zag instability
provides the stability boundary of the left-hand side only for a small neighbourhood above R = Rc.
The main part of the stability boundary on the left-hand side is described by the onset of cross-roll
disturbances with wavenumbers b decreasing first from 2.5 to a minimum of 2.0 around R = 4500
and then increasing to 3.6 at R = 104.

requires a sufficiently high amplitude of motion, it does not occur for Rayleigh num-
bers less than about 5000 and thus is preceded by the knot instability for values of
λ less than about 2. This latter instability exhibits the same symmetry properties as
the cross-roll instability but is characterized by a smaller value of the disturbance
wavenumber b (Busse & Clever 1979).

For Prandtl numbers of the order unity or less the skewed varicose instability
usually limits the region of stable rolls to high wavenumbers. Since this instability
has not been taken into account in the present analysis, the right-hand side of the
region of stable rolls is more restricted than it may appear from the figures. In figure
8 this effect is probably not very important since the onset of the knot instability is
shifted strongly towards the left with decreasing λ. But in the case of figure 9 for
P = 0.025 the onset of the skewed varicose instability is likely to prevent stable rolls
with wavenumbers α exceeding the value αc by any significant amount. The stability
of rolls becomes limited by a new branch of the cross-roll instability which sharply
veers back from the left-hand branch and reduces the range of stable rolls with α = αc
to zero as λ approaches values of the order 10−2.
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Figure 8. Same as figure 6, but in the case P = 0.71 for λ = ∞ (upper solid lines), λ = 5 (dashed
lines), λ = 2 (dash-dotted lines), λ = 0.75 (dotted lines), λ = 0.5 (lower solid lines). The stability
boundary on the right-hand side is given by the knot instability with b-wavenumbers indicated. The
stability boundary on the left-hand side is given by the zig-zag instability in the neighbourhood of
R = Rc and by the cross-roll instability at higher values of R. The b-wavenumbers of this instability
vary from b ≈ αc at R = Rc to about the same value at the upper end of the curve with a drop of
10% at the middle of the curve. Towards higher values of R the stability region is bounded by the
onset of the oscillatory instability which depends on the parameter λ only at the low wavenumber
end.

5. Inertial convection
Inertial or ‘flywheel’ convection is a typical phenomenon of low Prandtl number

fluids that has received much attention from theoreticians, but has not yet been
observed in experiments. Jones, Moore & Weiss (1976) first noticed that the convective
heat transport which for low Prandtl number fluids varies in proportion to P 2(R−Rc)
(unless two-dimensional rolls with unrealistic stress-free boundaries are considered)
exhibits a much stronger growth once a second critical Rayleigh number is exceeded.
Associated with this transition is a transformation of the convection rolls from a
sinusoidal dependence on the horizontal coordinate to a form in which the motion
depends only on the distance from the axis of the roll. Analytical treatments of this
phenomenon have been given by Proctor (1977) and by Busse & Clever (1981) and
for a numerical analysis of two-dimensional convection in low Prandtl number fluids
we refer to Clever & Busse (1981). The results obtained in the latter paper correspond
to the limit λ = ∞ of the roll solutions described by expressions (5). In figure 10
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Figure 9. Same as figure 6, but in the case P = 0.025 for λ = ∞ (solid lines), λ = 1 (dotted
lines), λ = 0.1 (dashed lines). The cross-roll instability has been characterized by the values of the
b-wavenumber. The other stability boundary corresponds to the onset of the oscillatory instability.
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Figure 10. The Nusselt number Nu for two-dimensional convection with the critical wavenumber
as function of R for λ = 1 (solid lines) and λ = ∞ (dashed lines, after Clever & Busse 1981). The
lines correspond from top to bottom to P = 0.71, 0.1, 0.025, 0.01 and 0.003.

the heat transports by convection rolls obtained for low Prandtl numbers in the case
λ = 1 have been compared with those for λ = ∞. It appears that the phenomenon of
inertial convection persists in the case of finitely conducting boundaries and it even
seems to be slightly enhanced.

The evolution towards the ‘flywheel’ form of convection rolls is demonstrated in
figure 11 where the property is clearly seen that the flywheel rolls become separated by
stagnant fluid if the wavenumber α is small enough. In the limit when the streamlines
become exactly circular the left-hand side of equation (4a) vanishes and its inhibiting
influence on the amplitude of motion disappears. Of course, because of the rigid
boundaries, deviations from circular streamlines occur in the viscous boundary layers
at top and bottom and ideal flywheel convection cannot be approached as closely as
in the case of convection in a horizontal cylinder treated by Proctor (1977).

Unfortunately, the interesting phenomenon of inertial convection rolls cannot
be easily realized in experiments because rolls are unstable with respect to three-
dimensional disturbances at Rayleigh numbers much below those required for the



Convection in the presence of finitely conducting boundaries 363

(a) (b)

0 p0 p

Figure 11. (a) Streamlines and (b) isotherms of convection rolls with α = 2.0 in the case λ = 0.5,
P = 0.025 for R = 1300, 2000, 5000 (top three plots) and in the case λ = 0.5, P = 0.003, R = 5000
(bottom plot).

Properties Water/Plexiglas Silicone oil/Plexiglas Water/glass

Fluid layer thickness 5 mm 4 mm 5 mm
Temperature 22 ◦C 27 ◦C 21 ◦C
Boundary thickness 10 mm 10 mm 3 mm
Thermal conductivity of fluid 0.605 W mK−1 0.131 W mK−1 0.605 W mK−1

Thermal expansivity γ 2.27× 10−4 K−1 10.8× 10−4 K−1 2.17× 10−4 K−1

Thermal diffusivity κ 0.145 mm2 s−1 0.0873 mm2 s−1 0.145 mm2 s−1

Kinem. viscosity ν 0.957 mm2 s−1 5.02 mm2 s−1 0.98 mm2 s−1

Boundary conductivity 0.154 W mK−1 0.154 W mK−1 0.79 W mK−1

Eff. conductivity ratio λ∗ 0.255 1.18 1.49

Table 1. Parameters of experiments.

transition to flywheel convection. There appears to be the possibility, however, of
suppressing three-dimensional disturbances by employing the stabilizing effect of the
Coriolis force. We shall comment on this possibility in the concluding section.

6. Experimental observations
In order to get an approximate comparison with the theoretical predictions some

experiments have been carried out. An experimental apparatus and a shadowgraph
visualization method similar to those used in the experiment of Busse & Whitehead
(1971) have been used. A sketch of the experimental setup is shown in figure 12. The
horizontal extent of the convection layer is only 430×210 mm2 and thus much smaller
than in the earlier experiment. Water and silicone oil have been used as convecting
fluids the properties of which are listed in table 1. The fluid layer is bounded by
3 mm thick glass plates which separate it from the upper and lower channels through
which thermostatically controlled water is pumped. In order to decrease the thermal
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Figure 12. Sketch of the experimental apparatus.

conductance of the boundaries additional Plexiglas plates of 10 mm thickness can
be inserted symmetrically above and below the convecting fluid. The experimental
apparatus is thus similar to one that used in the experiment of Le Gal & Croquette
(1988). Their layer was circular and had a smaller aspect ratio, but shadowgraph
visualization was also used.

Since the vertical extent of the Plexiglas plates is finite while an infinite half-space
has been assumed in the theory, the solution (8) must be modified. Assuming that the
temperatures at the positions z = ±( 1

2
+ δ) are fixed we obtain instead of (8)

Θ̂ =

∞∑
m=1, n=1

bmnhmn(± 1
2
)
sinhmα(z ∓ ( 1

2
+ δ)

sinhmα(∓δ)
+ λ(z ∓ 1

2
)

×
∞∑

n=even

b0nnπ(−1)n/2 for

{
1
2

+ δ > z > 1
2

− 1
2
− δ < z < − 1

2

(15)

such that the boundary conditions (2) for Θ are satisfied with

γmn tan( 1
2
γmn) = λmα coth(mαδ) for odd n (16a)

γmn cot( 1
2
γmn) = −λmα coth(mαδ) for even n (16b)

instead of equations (9). For the linear theory of the onset of convection all terms
with m > 1 can be neglected and equations (16) become identical to equations (9) in
this case if λ is replaced by

λ∗ ≡ λ coth αδ. (17)

It is difficult to measure the heat transport and the Rayleigh number in convection
experiments with boundaries of low conductivity since the temperature difference



Convection in the presence of finitely conducting boundaries 365

(a) (b)

Figure 13. Shadowgraph images of (a) coexisting rolls and squares and (b) square pattern convection
observed in a layer of silicone oil bounded by Plexiglas plates. The Rayleigh number exceeds the
critical value by about 20% in (a) and by about 50% in (b). In both cases the patterns are essentially
stationary for several hours.

3.0

2.0

1.0

0 0.4 0.8 1.2 1.6

k

αc

Figure 14. The wavenumber α as a function of the conductivity ratio λ between boundary and fluid.
The solid line indicates the result of the linear theory for the onset of convection. The measurement
points correspond the cases of water with Plexiglas boundaries, silicone oil with Plexiglas boundaries,
and water with glass boundaries (from left to right). For the experimental values the rescaled value
λ∗ given by (17) has been used.

across the fluid layer is only a small fraction of the measured difference between the
thermostatically controlled outer boundaries. Hence the experimental observations
have focused on those properties of convection which do not depend strongly on R.
In the case of water with Plexiglas boundaries convection in the form of square cells
is observed, while rolls are seen in the case of plate glass boundaries, which agrees
with the predictions of the weakly nonlinear theory (Riahi 1985). The case of silicone
oil with Plexiglas boundaries is of special interest since an onset of convection in
the form of rolls and a transition to square cells at a slightly supercritical Rayleigh
number is predicted. The experimental observations do indeed indicate an onset of
rolls and a regime of coexistence of rolls and square cells at supercritical Rayleigh
numbers as shown by figure 13(a). This phenomenon could be an indication of a
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hysteretic transition from rolls to squares with increasing R. At much higher values of
R of the order of a few times the critical value a second transition with a return from
square convection to roll-like convection appears to occur. Such a transition has not
been observed in the case of water with Plexiglas boundaries. The wavelength of roll
as well as square pattern convection has been measured and is found in reasonable
agreement with the prediction of the linear theory for the onset of convection as
shown in figure 14. The wavenumber in the case of water with Plexiglas boundaries is
lower than the value 2.5 measured by Le Gal & Croquette (1988) under rather similar
conditions. But because of the small aspect ratio the size of their square convection
cells varies considerably and strongly decreases towards the sidewalls.

7. Concluding remarks
The influence of the finite thermal conductivity of the upper and lower boundaries

is usually neglected in theoretical treatments of Rayleigh–Bénard convection in order
to avoid the introduction into the problem of an additional parameter. As can be
seen from the present study and other recent ones focusing on the influence of
asymmetric boundaries (Clever & Busse 1995, 1998) the reducing of the ratio λ
between the conductivities of the fluid and boundaries has profound effects on the
dynamics of convection and on its horizontal planform in particular. On decreasing λ
the temperature field decouples to some extent from the velocity field and thus more
general solutions than just simply periodic rolls become possible. Although solutions
of this kind as displayed in figures 4(a) and 4(b) have been found to be unstable in
the two-dimensional case, an even richer variety of solutions must be expected in the
three-dimensional case. Eventually these modulated solutions could be stabilized in
layers of finite aspect ratio.

One of the motivations of the present paper has been the question of the real-
izibility of the phenomenon of inertial convection in an experiment. Because of the
required low Prandtl number only convection in liquid metals offers the chance of
a successful experiment. In this case high values of λ cannot be attained and the
question arises whether inertial convection persists when the conductivity ratio λ is
reduced to values of the order unity. The analysis of § 5 has given an affirmative
answer to this question. The second obstacle to an experimental realization are the
three-dimensional instabilities of convection rolls in a low Prandtl number fluid. By
using the configuration of a rotating cylindrical annulus we hope to overcome this
obstacle eventually. As demonstrated in an earlier experiment (Busse & Carrigan
1974) convection driven by centrifugal buoyancy in the annular gap between a cooled
inner and a heated outer cylinder assumes the form of two-dimensional rolls parallel
to the axis of rotation. Since the Coriolis force exerts a dominating influence on
convection in a rapidly rotating cylindrical annulus it is expected that the transition
to inertial convection can indeed be observed in such an experiment.
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